

Available online at www.sciencedirect.com

Carbohydrate Research 340 (2005) 1714-1721

Carbohydrate RESEARCH

Deuterium isotope effects in carbohydrates revisited. Cryoprobe studies of the anomerization and NH to ND deuterium isotope induced ¹³C NMR chemical shifts of acetamidodeoxy and aminodeoxy sugars

Bruce Coxon*

National Institute of Child Health and Human Development, 31 Center Drive, MSC 2423, National Institutes of Health, Bethesda, MD 20892, USA

> Received 3 January 2005; accepted 29 April 2005 Available online 3 June 2005

Abstract—Complete 1 H and 13 C NMR chemical shift assignments have been generated from a series of acetamidodeoxy and aminodeoxy sugar derivatives. For free sugars, the enhanced sensitivity of an NMR cryoprobe allowed simple 1D and 2D NMR spectra to be obtained from essentially single anomers, before significant mutarotation had occurred. The NMR assignments have been used to characterize deuterium isotope effects on 13 C chemical shifts measured under conditions of slow NH to ND exchange in single solutions. Within a range of 0 to -0.138 ppm, β , γ , δ , and ζ deuterium isotope effects have been observed, thus providing additional reference data for assignment of the 13 C NMR spectra of nitrogenous saccharides.

Keywords: Acetamidodeoxy sugars; Anomerization; ¹³C NMR chemical shifts; COSY; Cryoprobe; Deuterium isotope effects; ¹H NMR chemical shifts; HMBC; HSQC; TOCSY

1. Introduction

Secondary isotope effects on the ¹³C chemical shifts of carbohydrates induced by OH to OD exchange have been extensively studied. ^{1–17} Such effects have been examined by two main methods: (a) detection of separate signals for OH and OD containing species in slow chemical exchange; ^{1–13} this is usually achieved by dissolution of the sugar in dimethyl sulfoxide, which is known to decrease the rate of OH proton exchange by hydrogen bonding of the solvent to the hydroxyl hydrogen atoms; (b) detection of the mixed ¹³C signals of H₂O and D₂O solutions of sugars contained in concentric sample tubes, under conditions of rapid hydroxyl proton exchange. ^{14–17} Deuterium isotope effects on ¹³C shifts due to *C*-deuteration are also well known. ^{18–21}

Acetamidodeoxy sugars are a common structural motif in bacterial polysaccharides,²² but little data has been reported for isotope effects on ¹³C chemical shifts induced by NH to ND chemical exchange in these sugars. As part of a broader study of nitrogenous polysaccharides as they relate to vaccine development, we have determined and confirmed the complete ¹H and ¹³C NMR assignments of a series of *N*-acetylamino sugars and some selected secondary amino sugar derivatives by 2D NMR methods. The resulting spectral assignments have been used to characterize the isotope effects on ¹³C chemical shifts produced by NH to ND exchange.

2. Experimental

2.1. Materials

2-Acetamido-2-deoxy- α - and β -D-glucopyranose (1a,b), 2-acetamido-2-deoxy- α - and β -D-mannopyranose (2a,b),

^{*} Tel.: +1 301 2954780; fax: +1 301 2951435; e-mail: coxonb@ mail.nih.gov

2-acetamido-2-deoxy- α - and β -D-galactopyranose (3a,b), tetra-O-acetyl-2-acetamido-2-deoxy-α-D-glucopyranose (4), 4-nitrophenyl 2-acetamido-2-deoxy- α - and β -Dglucopyranoside (5a,b), 3-acetamido-3-deoxy-α- and β -D-glucopyranose (**6a,b**), methyl N-2,4-dinitrophenyl 3-amino-4,6-*O*-benzylidene-3-deoxy-2-*O*-methyl-α-Daltropyranoside²³ (7), and bis(methyl 2-O-acetyl-4,6-Obenzylidene-3-deoxy-α-D-altropyranosid-3-yl)amine²⁴ (8). Compounds 1a, 2b, 3a, and 6a,b were obtained from Pfanstiehl Laboratories, Inc., Waukegan, IL and/or United Biochemical Corporation, Cleveland, OH. Their pyranose anomers were prepared by anomerization in solution. Derivatives 4, 7, and 8 were synthesized in house. Glycosides 5a and 5b were obtained from P-L Biochemicals, Inc., Milwaukee, WI (see Fig. 1).

2.2. NMR spectroscopy

All NMR spectra were acquired at 300 K by use of a Bruker DRX-500 NMR spectrometer equipped with a 5 mm TXI HCN cryoprobe with z-gradient coil, a Silicon Graphics O2 workstation, and Bruker xwinnmr software, version 3.5, patch level 6. During testing, this cryoprobe achieved a signal:noise of 3478:1 on 0.1% ethylbenzene solution, which was ~4 times the signal:noise specification for an equivalent, normal probe. ¹H NMR spectra were acquired using 32,768 point data sets, a 30° pulse (2.7 μs), and a pulse recycle time of 6 s. NMR solvent volumes were 0.5 mL, and solute weights were 13–21 mg for compounds 1a–3b, 21–23 mg for 4, 18 mg for 5a and 5b, 15–17 mg for 6a and 6b, 22–27 mg for 7, and 43 mg for 8. The resolution of the spectra was enhanced

Figure 1. Structures of acetamidodeoxy and aminodeoxy carbohydrate derivatives 1a–8 and the incremental ¹³C NMR chemical shifts (ppm) produced by *N*-deuteration.

by Gaussian multiplication of the free induction decay, using a line-broadening of -1.5 to -3.5 Hz, and a Gaussian truncation fraction of 0.3. ¹³C NMR spectra were acquired by using 65,536 point data sets, a 90° pulse (14 µs), and a pulse recycle time of 1.5 s. Resolution was enhanced either by zero-filling to 65,536 data points, or by forward, complex linear prediction to 131,072 points, together with Gaussian multiplication up to a line-broadening of -4 Hz. The ¹H and ¹³C chemical shifts of solutions in D₂O were referenced to internal acetone, set to 2.225 and 31.0 ppm, respectively. Tetramethylsilane was used as an internal chemical shift reference for solutions in organic solvents, and was set to 0.0 ppm for both ¹H and ¹³C NMR spectra. The digital resolution of most of the 1D ¹H and ¹³C spectra was 0.00049 and 0.0015 ppm/point, respectively. ¹H-coupled ¹³C NMR spectra were acquired with the nuclear Overhauser effect (NOE) by use of gated, WALTZ-16 irradiation at the ¹H frequency. These spectra were used to measure ${}^{1}J_{C-1,H-1}$. All 2D NMR spectra were acquired by field gradient-selected methods. 2D Correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY), heteronuclear single quantum correlation (HSOC), and heteronuclear multiple bond correlation (HMBC) were used as needed to confirm ¹H and ¹³C assignments. Forward linear prediction to larger data sizes was used to improve the resolution of 2D spectra, where necessary. 2D COSY, HSQC, and HMBC NMR spectra were obtained by using 2048 $(t_2) \times 512$ (t_1) point data sets, zero-filled to 2048 $(F_2) \times 2048 (F_1)$ points. For 2D COSY, the spectral width was 4.25 kHz in each dimension and the read pulse was 30° (2.4 µs), whereas for 2D HSQC and HMBC, the ¹H and ¹³C spectral widths were 4.25 kHz (F_2) and 25.1 kHz (F_1), respectively. 2D TOCSY NMR spectra were acquired by use of 16,384 $(t_2) \times 512$ (t_1) point data sets, zero-filled to 32,768 $(F_2) \times 2048$ (F_1) points, together with spectral widths of 3.21 kHz in each dimension. F_2 Slices were taken to generate separate 1D sub-spectra for anomers. 2D COSY and HMBC spectra were displayed in the magnitude mode, whereas the phase-sensitive, echoanti-echo protocol was used for 2D TOCSY and HSQC spectra.

3. Results and discussion

This work was facilitated by the enhanced sensitivity of a cryoprobe, which allowed simple 1D and 2D ¹H and ¹³C NMR spectra to be obtained rapidly from solutions of essentially single anomers of the acetamidodeoxy sugars before significant anomerization (10–15% content of

Table 1. ¹H chemical shifts^a of amino sugar derivatives 1–8

	Solvent	H-1	H-2	H-3	H-4	H-5	H-6	H-6′	Me(NAc)	Others
1a 1b	D_2O	5.197 4.708	3.872 3.670	3.757 3.531	3.483 3.461	3.853 3.461	3.817 3.903	3.779 ~3.739	2.046 2.044	
2a 2b	D_2O	5.121 5.028	4.319 4.451	4.047 3.828	3.620 3.522	3.863 3.416	~3.839 3.890	~3.839 3.812	2.048 2.092	
3a 3b	D_2O	5.229 4.642	4.129 3.871	3.917 3.714	3.994 3.933	4.100 3.686	\sim 3.743 3.792	\sim 3.743 3.753	2.047 2.045	
4	D ₂ O CDCl ₃	6.229 6.172	4.487 4.491	5.396 5.251	5.164 5.211	4.317 4.005	4.381 4.253	4.134 4.071	1.966 1.945	Me-1,3,4,6 ^b 2.230, 2.065, 2.100, 2.118 Me-1,3,4,6 ^b 2.201, 2.060, 2.051, 2.095
5a	$(CD_3)_2SO$	5.598	3.888	3.701	3.298	3.399	3.574	3.498	1.849	NH 8.063, HO-3 5.014, HO-4 5.193, HO-6 4.564, Ar-H-2,6 7.274, H-3,5 8.223
5b	$(CD_3)_2SO-D_2O$ (5:1 v/v)	5.185	3.757	3.456	3.231	3.432	3.733	3.516	1.834	NH 7.942°, HO-3 5.254°, HO-4 5.302°, HO-6 4.803°, Ar–H-2,6 7.178, H-3,5, 8.217
6a 6b	D_2O	5.240 4.716	3.576 3.256	4.093 3.879	3.432 3.424	3.897 3.550	3.828 3.889	3.762 3.720	2.056 2.054	
7	CDCl ₃	4.879	3.636	4.472	4.266	4.106	4.314	3.872	_	NH 9.862, Me-1 3.590, Me-2 3.552, Ph-H-2,6 7.190, H-3,5 7.240, H-4 7.285 Ph-C <i>H</i> 5.597, DNP ^d H-3 9.123, H-5 8.141, H-6 7.246
8	CDCl ₃	4.607	5.054	3.392	3.824	4.261	4.305	3.768	_	NH 3.169, Me-1 3.378, Me-2 1.983, Ph-H-2,4,6 7.356-7.315, H-3,5 7.465-7.445 Ph-C <i>H</i> 5.547

^a The data were measured directly from the spectra by first-order analysis, and are for the ND forms, except that for derivative **5a** in (CD₃)₂SO, and **4**, **7**, and **8** in CDCl₃ solution, the NH forms were measured. Data reported for **1a**, **2b**, and **3a**, are for solutions of the predominant pyranoid anomer in the crystalline acetamidodeoxy sugar, measured before significant mutarotation had occurred.

^b The assignments for the Me groups are specific and in respective order, and were made by 2D HMBC.

^c Assignments for residual, non-exchanged NH and OH protons.

^d DNP = 2,4-dinitrophenyl.

the second anomer) had occurred. For example, under the conditions of the NMR experiments, 1a mutarotated to $\sim 11\%$ of **1b** in 13 min, **2b** to $\sim 15\%$ of **2a** in 11 min, and 3a to ~13% of 3b in 11 min. Typically, the use of the cryoprobe with one scan per free induction decay allowed data for each of the 2D experiments to be acquired from freshly dissolved samples, with good resolution, in about 9 min, following a 1–2 min sample dissolution, insertion, and lock equilibration time. This procedure afforded simple, readily interpretable 1D and 2D ¹H and ¹³C spectra for compounds 1a, 2b, and 3a, which were essentially single anomers in the crystal, but which underwent anomerization on dissolution in water. ¹H and ¹³C chemical shift assignments are shown in Tables 1 and 2, and coupling constants in Table 3. Compounds 1a and 1b have been studied previously by NMR spectroscopy at 270 MHz, followed by iterative spectral analysis.²⁵ Our chemical shifts and assignments for 1a and 1b agree well with those of Perkins et al.²⁵ when allowance is made for the differing conditions of referencing, temperature, and concentration. For compounds 1a-3b, our ¹³C assignments made by 2D methods agree with those of Bundle et al., 26 which were partially obtained by use of synthetic, C-deuterated acetamidodeoxy sugars. More detailed ¹³C NMR

assignments were obtained for **2a** and **2b** in the current work, because at a 13 C Larmor frequency of 126 MHz, the C-1 resonances of these anomers are resolved (see Fig. 2), in contrast to the earlier work at 25 MHz. The anomeric configurations of the components of our solutions followed from the values of $^{1}J_{\text{C-1,H-1}}$, which fell in the range 169.7–179.3 Hz for α anomers, and 161.5–162.6 Hz for β anomers²⁷ (see Table 3). For compounds **1a,b**, **3a,b**, **4**, **5a,b**, **6a**, and **6b**, the anomeric configurations were also supported by the values of $^{3}J_{1,2}$ 3.4–3.7 Hz for α anomers and $^{3}J_{1,2}$ 7.9–8.5 Hz for β anomers.

During these studies, we observed that the resonances of ¹³C nuclei in and around the acetamido group or certain secondary amino groups undergo deuterium-induced isotope shifts (see Fig. 1 and Table 4) on NH to ND exchange. In contrast to previous measurements ^{14–17} of the OH to OD induced, differential deuterium isotope shifts of carbohydrates in aqueous solutions, which required the use of separate solutions in H₂O and D₂O contained in dual concentric cells, the NH and ND forms of the amino sugar derivatives could be detected directly as separate signals in the spectrum of one solution (see Figs. 2 and 3) because in these derivatives, NH to ND chemical exchange is slower^{28,29} than OH to OD

Table 2. ¹³C chemical shifts^a of amino sugar derivatives 1–8

	Solvent	C-1	C-2	C-3	C-4	C-5	C-6	Me	C=O	Others
1a 1b	D ₂ O	91.608 95.683	55.850 57.453	71.462 74.653	70.857 70.594	72.319 76.703	61.371 61.498	22.656 22.927	175.230 175.508	
2a 2b	D ₂ O	93.873 93.378	53.967 54.838	69.610 72.807	67.521 67.250	72.742 77.087	61.140 61.125	22.663 22.794	175.533 176.453	
3a 3b	D ₂ O	91.767 96.192	51.028 54.446	68.167 71.924	69.356 68.648	71.294 75.941	62.015 61.796	22.725 22.979	175.429 175.690	
4	D_2O	91.336	50.927	71.449	69.016	70.004	62.560	22.377	175.201	Me-1,3,4,6 ^b 20.916, 20.745, 20.832, 20.845 C=O-1,3,4,6 ^b 172.852, 173.901, 173.464, 174.404
	CDCl ₃	90.680	51.040	70.656	67.450	69.703	61.516	23.056	169.993	Me-1,3,4,6 ^b 20.956, 20.733, 20.580, 20.709 C=O-1,3,4,6 ^b 168.660, 171.726, 169.110, 168.660
5a	$(CD_3)_2SO$	96.289	53.272	70.203	70.097	74.316	60.351	22.474	169.687	Ar–C-1 161.855, C-2,6 116.958, C-3,5 125.666, C-4 141.714
5b		98.288	55.109	73.737	69.893	77.286	60.382	22.956	169.276	Ar-C-1 162.168, C-2,6 116.467, C-3,5 125.687, C-4 141.689
6a 6b	D ₂ O	92.296 97.200	70.621 73.162	54.558 57.936	68.675 68.803	72.390 77.798	61.268 61.467	23.006 22.953	175.887 175.734	
7	CDCl ₃	98.196	78.578	51.133	76.535	59.227	68.964	_	_	Me-1 55.233, Me-2 58.583, Ph-C-1 136.757, C-2,6 125.738, C-3,5 128.191, C-4 129.166, PhCH 101.944 DNP ^c C-1 148.841, C-2 130.796, C-3 123.964, C-4 136.141, C-5 129.137, C-6, 115.782
8	CDCl ₃	98.932	72.524	55.513	77.698	58.315	69.156	21.000	169.331	Me-1 55.253, Ph-C-1 137.861, C-2,6 136.347, C-3,5 128.159, C-4 128.863, Ph-CH 102.030

^a Data are for the ND forms, except that for derivatives **5a** and **5b** in (CD₃)₂SO, and **4**, **7**, and **8** in CDCl₃ solution, the NH forms were measured. The data for **1a**, **2b**, and **3a**, are for solutions of the predominant pyranoid anomer in the crystalline acetamidodeoxy sugar, measured before significant mutarotation had occurred.

^b The assignments for the Me and C=O groups are specific and in respective order, and were made by the 2D HMBC and HSQC methods.

^c DNP = 2,4-dinitrophenyl.

Table 3. Coupling constants^a of amino sugar derivatives 1–8

	Solvent	$J_{1,2}$	$J_{2,3}$	$J_{3,4}$	$J_{4,5}$	$J_{5,6}$	$J_{5,6'}$	$J_{6,6'}$	$^{1}J_{\text{C-1,H-1}}$	Others
1a 1b	D ₂ O	3.5 8.4	10.7 10.3	9.2 8.9	10.1 9.7	NR ^b 1.8	5.2 5.3	12.1 12.3	171.0 162.2	
2a 2b	D_2O	1.7 1.7	4.7 4.4	9.8 9.7	9.5 9.9	NR 2.3	NR 5.0	NR 12.3	172.2 162.6	
3a 3b	D_2O	3.7 8.4	11.1 11.0	3.2 3.4	1.3 1.1	\sim 5.8° 7.8	\sim 6.4° 4.6	NR 11.6	171.4 161.5	$J_{1,3} \ 0.6$ $J_{2,4} \ 0.5$
4	D ₂ O CDCl ₃	3.7 3.7	10.9 10.7	9.4 9.6	10.2 9.8	3.9 4.0	2.2 2.4	12.7 12.5	179.3 178.9	J _{2,NH} 9.1
5a 5b	(CD ₃) ₂ SO (CD ₃) ₂ SO–D ₂ O (5:1 v/v)	3.4 8.5	10.8 10.2	8.6 8.9	9.9 9.8	2.1 1.9	5.2 5.8	11.9 11.9	173.3 ^d 162.1 ^e	$J_{2,\text{NH}}$ 7.9 $J_{3,\text{OH}}$ 5.9, $J_{4,\text{OH}}$ 5.8, $J_{6,\text{OH}}$ 5.7, $J_{6',\text{OH}}$ 5.9 $J_{2,\text{NH}}$ 9.1 ^f , $J_{3,\text{OH}}$ 5.6 ^g , $J_{4,\text{OH}}$ 5.4 ^g , $J_{6,\text{OH}}$ 5.7 ^g , $J_{6',\text{OH}}$ 5.7 ^g
6a 6b	D_2O	3.6 7.9	10.5 10.4	10.4 10.1	9.9 9.8	2.4 2.3	5.0 5.7	12.3 12.3	169.7 161.6	
7	CDCl ₃	1.2	2.9	3.6	9.9	5.1	10.0	10.4	170.2	J _{3,NH} 8.5
8	CDCl ₃	1.1	2.8	3.7	9.5	5.2	10.1	9.7	170.2 ^h	

^a The data were measured directly from the spectra by first-order analysis, and are for the ND forms, except that for derivative **5a** in (CD₃)₂SO, and **4**, **7**, and **8** in CDCl₃ solution, the NH forms were measured. The data for **1a**, **2b**, and **3a**, are for solutions of the predominant pyranoid anomer in the crystalline acetamidodeoxy sugar, measured before significant mutarotation had occurred.

^h Measured on a 1:2 mixture of NH and ND forms.

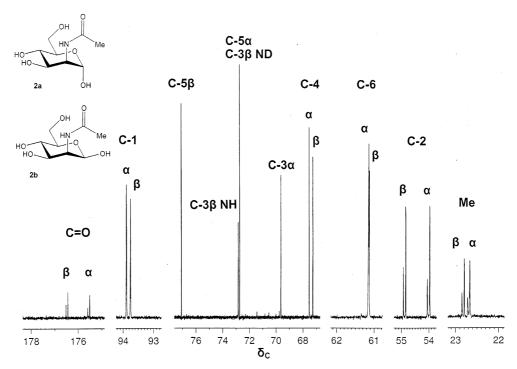


Figure 2. ¹³C NMR spectrum of 2-acetamido-2-deoxy-p-mannopyranose equilibrated in 2:1 (v/v) D₂O-H₂O for 13 days.

exchange. This is an experimental advantage compared with the use of concentric cells. The selectivity of detec-

tion of NH- to ND-induced 13 C shifts for **2a** and **2b** equilibrated in D_2O is illustrated in Figure 2, in which

^b Not resolved.

^c Values interchangeable.

^d Measured on the ND form in 5:1 (CD₃)₂SO-D₂O.

^e Measured on the NH form in (CD₃)₂SO.

^f Measured from the residual, non-exchanged NH doublet.

^g Measured from the residual, non-exchanged OH multiplets.

Solvent C-1 C-2 C-3 C-4 Me C=OOthers 1a D_2O 0.085 0.028 0.051 0.085 1b 0.072 0.025 0.045 0.083 2a D_2O 0.088 0.051 0.0852b 0.083 0.053 0.0823a D_2O 0.086 0.029 0.051 0.087 0.019 0.079 0.0863b 0.036 0.051 0.089 0.049 0.087 4 D_2O 0.025 CDCl₃ 0.090 0.023 0.047 0.079 5a (CD₃)₂SO 0.090 0.027 0.047 0.086 5b 0.026 0.073 0.042 0.050 0.0816a D_2O 0.030 0.080 0.028 0.051 0.087 0.027 0.078 0.026 0.051 0.086 6b

0.009

0.033

0.009 (Me-1)

Table 4. Incremental ¹³C chemical shifts^a of amino sugar derivatives 1–8 induced by NH to ND exchange

0.087

0.100

0.020

0.036

CDCl₃

CDCl₃

7

8

splitting of the Me, C=O, C-2, and C-3 resonances is observed (except for C-3 of 2a).

0.012

We investigated several solvent systems for NH to ND (and concurrent OH to OD) exchange, including D₂O-H₂O, (CD₃)₂SO-D₂O-H₂O, and CDCl₃-D₂O-H₂O. The use of the latter two-phase mixture for detection of the isotope induced ¹³C shifts of a fully blocked carbohydrate derivative is illustrated for the secondary amine 7 in Figure 3. For this 3-amino-3-deoxy derivative, deuterium-induced splittings of the C-1, C-2, C-3, C-4, and H₃CO-1 resonances of the altropyranosyl ring, and C-1, C-2, and C-6 signals of the 2,4-dinitrophenyl ring were observed (see Table 4).

An exchange solvent containing 2:1 (v/v) D₂O–H₂O was useful for identifying which ¹³C resonances belonged to the NH and ND forms, but for the ready detection of small splittings between these forms, the use of 1:1 (v/v) D₂O–H₂O was optimum. The rates of NH to ND exchange varied widely under different conditions of solvent and D₂O availability, and these rates were monitored by ¹H and ¹³C NMR spectroscopy.

The magnitudes of the NH- to ND-induced 13 C shifts found (Table 4) were β (CH and C=O) -0.072 to -0.100 ppm, γ (CH) 0 to -0.043 ppm, γ (CH₃) -0.045 to -0.053 ppm, δ 0 to -0.012 ppm, and ζ 0 to -0.009 ppm. The β 13 C shift for C-1 of an N-(2,4-dinitrophenyl) group was unusually large at -0.138 ppm. For the C-2 resonances, the absolute magnitudes of the deuterium isotope-induced 13 C shifts were observed to be 0.003–0.017 ppm larger for the α anomers than for the β anomers (Table 4). Similarly, the incremental shifts for the 13 C=O signals are 0.001–0.005 ppm larger for the α anomers than for the β . These differences are small and may not be structurally useful. Sites (e.g.,

C-3 and Me) that are more remote from the anomeric carbon atom did not show consistent α/β differences (Table 4). In general, the magnitudes of the NH- to ND-induced ¹³C shifts are comparable with those induced by OH to OD exchange. ¹⁻¹⁷

DNPb C-1 0.138, C-2 0.026, C-6 0.043

4. Summary

The enhanced sensitivity of an NMR cryoprobe has been used to obtain simple 1D and 2D ¹H and ¹³C NMR spectra of D₂O solutions of three acetamidodeoxy sugars that occur commonly in bacterial polysaccharides, before significant anomerization of the anomers initially present in the crystalline sugars had taken place. Mixtures of equilibrated anomers and other related aminodeoxy sugar derivatives have been studied, complete ¹H and ¹³C chemical shift assignments generated, and ¹H-¹H and ¹³C-¹H coupling constants measured. The ¹³C assignments have been used to define the deuterium induced, incremental ¹³C chemical shifts produced by NH to ND exchange. Detection of the NH to ND induced isotope effects on the ¹³C shifts does not require the use of concentric cells containing H₂O and D₂O solutions, because the rate of NH to ND exchange is slower than that of the OH to OD exchange studied earlier. 14-17 Observation of the NH- to ND-induced isotope effects on ¹³C shifts has been extended to two secondary amino sugar derivatives. The data reported should be useful for the NMR analysis of saccharides in general, and specifically for selective confirmation of the ¹³C NMR assignments for nitrogenous saccharides in aqueous solution, for situations in which 2D NMR correlation methods yield ambiguous results.

^a All data shown are negative, that is, the upfield shifts in ppm produced by NH to ND conversion.

^b DNP = 2,4-dinitrophenyl.

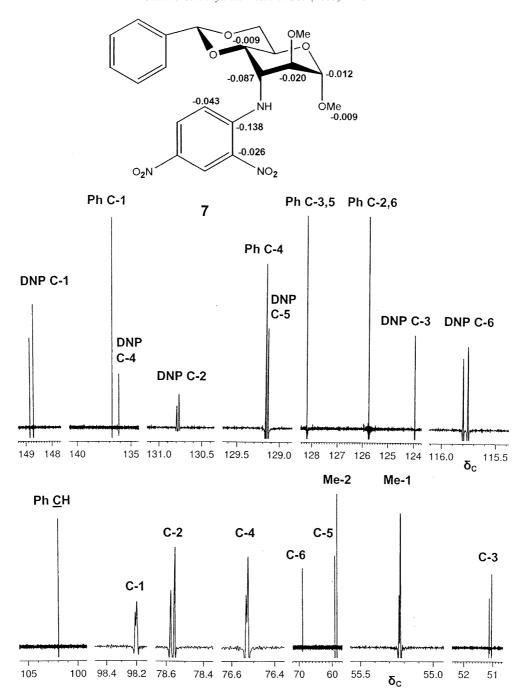


Figure 3. 13 C NMR spectrum of a solution of methyl N-2,4-dinitrophenyl 3-amino-4,6-O-benzylidene-3-deoxy-2-O-methyl-α-D-altropyranoside (7) in chloroform-d with a D_2O overlayer. The spectrum represents the data obtained by averaging of partial NH to ND exchange over a weekend, using 5708 scans, a 45° pulse, and a pulse recycle time of 40 s to ensure relaxation of 13 C nuclei having long T_1 values. Deuterium-induced splittings (ppm) of the resonances of 13 C nuclei around the nitrogen atom are shown.

References

- Gagnaire, D.; Vincendon, M. J. Chem. Soc., Chem. Commun. 1977, 509–510.
- Gagnaire, D.; Mancier, D.; Vincendon, M. Org. Magn. Reson. 1978, 11, 344–349.
- 3. Ho, S.-C.; Koch, H. J.; Stuart, R. S. Carbohydr. Res. 1978, 54, 251–256.
- 4. Bock, K.; Lemieux, R. U. Carbohydr. Res. 1982, 100, 63-
- Christofides, J. C.; Davies, D. B. J. Chem. Soc., Chem. Commun. 1982, 560–562.
- Christofides, J. C.; Davies, D. B. J. Am. Chem. Soc. 1983, 105, 5099–5105.
- Christofides, J. C.; Davies, D. B. J. Chem. Soc., Chem. Commun. 1983, 324–326.

- 8. Christofides, J. C.; Davies, D. B. J. Chem. Soc., Perkin *Trans. 2* **1984**, 481–488.
- 9. Davies, D. B.; Christofides, J. C. In Natural Products Chemistry; Zalewski, R. I., Skolik, J. J., Eds.; Elsevier: Amsterdam, 1985, pp 305–317. 10. Christofides, J. C.; Davies, D. B. *J. Chem. Soc., Chem.*
- Commun. 1985, 1533-1534.
- 11. Christofides, J. C.; Davies, D. B. Magn. Reson. Chem. **1985**, 23, 582-584.
- 12. Davies, D. B.; Christofides, J. C. Carbohydr. Res. 1987, 163, 269-274.
- Christofides, J. C.; Davies, D. B. J. Chem. Soc., Perkin Trans. 2 1987, 97-102.
- Pfeffer, P. E.; Valentine, K. M.; Parrish, F. W. J. Am. Chem. Soc. 1979, 101, 1265-1274.
- 15. Pfeffer, P. E.; Parrish, F. W.; Unruh, J. Carbohydr. Res. **1980**, 84, 13–23.
- 16. Valentine, K. M.; Doner, L. W.; Pfeffer, P. E. Carbohydr. Res. 1981, 96, 293-298.
- 17. Pfeffer, P. E.; Hicks, K. B. Carbohydr. Res. 1982, 102, 11-

- 18. Maciel, G. E.; Ellis, P. D.; Hofer, D. C. J. Phys. Chem. **1967**, 71, 2160–2164.
- 19. Gorin, P. A. J. Can. J. Chem. 1974, 52, 458-461.
- 20. Gorin, P. A. J.; Mazurek, M. Can. J. Chem. 1975, 53, 1212-1223.
- 21. Gorin, P. A. J. Adv. Carbohydr. Chem. Biochem. 1981, 38, 13-37.
- 22. Kubler-Kielb, J.; Coxon, B.; Schneerson, R. J. Bacteriol. **2004**, 186, 6891–6901.
- 23. Coxon, B. Tetrahedron 1965, 21, 3481–3503.
- 24. Coxon, B.; Hough, L. Carbohydr. Res. 1979, 73, 47-57.
- 25. Perkins, S. J.; Johnson, L. N.; Phillips, D. C.; Dwek, R. A. Carbohydr. Res. 1977, 59, 19-34.
- Bundle, D. R.; Jennings, H. J.; Smith, I. C. P. Can. J. Chem. 1973, 51, 3812-3819.
- 27. Bock, K.; Pedersen, C. Acta Chem. Scand. B 1975, 29, 258-264.
- 28. Feeney, J.; Partington, P.; Roberts, G. C. K. J. Magn. Reson. 1974, 13, 268-274.
- 29. Ladner, H. K.; Led, J. J.; Grant, D. M. J. Magn. Reson. **1975**, 20, 530-534.